Matrix Kernel
Description
We can use Sage to find the null space (kernel) of a matrix, or in other words the set of all vectors $\mathbf{v}$ such that $A\mathbf{v} = \mathbf{0}$. The Sage cell below computes the null space of
(1)\begin{align} A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}. \end{align}
Sage Cell
Code
A = matrix([[1, 2, 3], [4, 5, 6]])
A.right_kernel()
Options
Computing the Left Kernel
There is also a left_kernel() command, which gives us all vectors $\mathbf{v}$ such that $\mathbf{v}A = \mathbf{0}$
Code
A = matrix([[1, 2, 3], [4, 5, 6]])
A.left_kernel()
Testing for Finiteness
We can use the is_finite() method to see if a given null space is a finite set.
Code
A = matrix([[1, 2, 3], [4, 5, 6]])
nsp = A.right_kernel()
nsp.is_finite()
Tags
CC:
Primary Tags: Linear Algebra: Euclidean spaces
Secondary Tags: Euclidean spaces: Row, column, and null spaces
A list of possible tags can be found at The WeBWorK Open Problem Library. For linear algebra tags see the Curated Courses Project.
Related Cells
- Right and Left System Solving Finding solutions to the equations $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x}A = \mathbf{b}$.
- The Column Space of A Matrix Finding the column space of a matrix.
- Linear Combinations of Vector Building Linear Combinations in Sage.
Attribute
Permalink:
Author:
Date: 23 Feb 2020 23:58
Submitted by: Zane Corbiere