Finding Eigenvalues and Eigenvectors in Octave

## Description

The `eig` function in Octave calculates eigenvectors and eigenvalues. The following cell calculates the eigenvalues of the matrix

\begin{align} A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & -3 & 1 \\ 4 & 1 & 4 \end{pmatrix}. \end{align}

## Sage Cell

#### Code

```
A=[1 3 3; 3 -3 1; 4 1 4];
eig(A)
```

## Options

#### Option

In order to obtain the eigenvectors, you need to provide two variables for the answer. The column of the matrix `V` are the eigenvectors. The eigenvalues are now in the diagonal matrix `D`. Notice that $VDV^{-1}$ recovers the original matrix.

.

#### Code

```
A=[1 3 3; 3 -3 1; 4 1 4];
[V, D] = eig(A)
V*D*inv(V)
```

## Tags

Primary Tags:

Secondary Tags:

## Related Cells

## Attribute

Permalink:

Author:

Date: 10 Dec 2018 16:10

Submitted by: Tom Judson